Skip to main content

Posts

New technique could provide insights about behavior of biomolecules in watery environments

Scientists have measured for the first time at the nanometer scale the characteristic patterns of folds responsible for proteins to know their three-dimensional shape in water with the help of the method developed earlier. With the help of this technique, scientists will be able to gain insights about the behavior of biomolecules in watery environments. These insights will result into increase in understanding the major diseases including Alzheimer's , that are related to "mistakes" in protein folding. We would not be able survive life if proteins didn't fold into precise patterns resulting into helices, sheets and other shapes that give proteins their three-dimensional structure. The precise shapes of p  Scientists have measured for the first time at the nanometer scale the characteristic patterns of folds responsible for  proteins  to know their  three-dimensional shape  in water with the help of the method developed earlier. With the help of this techniqu
Recent posts

Cerium Oxide Nano-particles Hold Therapeutic Potential for Parkinson ’s Disease

To prevent the effects of  alpha-synuclein  in the brain, a tiny particle of cerium oxide is used which is compound with antioxidant properties a representing a new therapeutic treatment for the  Parkinson’s disease.  Several factors are there that contributes to Parkinson’s disease progression, including the accumulation of alpha-synuclein proteins inside nerve cells and the formation of toxic protein aggregates called  Lewy bodies.  Efforts have been made by the researchers to develop pharmacological  approaches  capable of fighting Parkinson’s disease, but no effective solution has been found. Most pharmacological compounds are non- specific, resulting in severe side effects. Most of the available compounds are unable to cross the blood-brain barrier which is a semipermeable membrane protecting the brain and are not able to reach the nerve cells affected by Parkinson’s. The  utilization of nanoparticles loaded with an active agent  has shown some promise in overcoming the

How to Tell If You’re Carbohydrate Intolerant—And Yeah, It's a Thing

  Carbohydrate , Carbohydrate, Carbohydrate. The ‘other’ c-word that truly divides rooms. Should we eat them? Are they terrible for our health? Are brown ones better than white ones? Why are they so demonized? Carbohydrates are an integral part of any diet, but the amount that works within someone’s diet is a grey area—meaning what works for one person may not work for another. If we are used to feeling a bit on the side of life after consuming carbohydrate, it should be known that carbohydrate intolerance is totally a thing and should be taken into consideration when assessing which type of diet is best for us. What is carbohydrate intolerance? Carbohydrate intolerance is the failure to digest one or many carbohydrates due to a lack of one or more gastrointestinal enzymes. The symptoms may include diarrhea, bloating, nausea and flatulence, an official diagnosis can be made by a hydrogen or methane breath test.                                          How do we t

Scientists analysed the proteome of T helper 17 cells

T helper 17 (T-h17) cells have essential functions in autoimmune diseases and inflammation belonging to a group of T cells. To maintain self-tolerance and prevent autoimmune responses, Regulatory T cells (iTregs) are used to function suppressively. Proteins are one of the important biomolecules forming the functional and structural entity of a living cell. To determine the set of proteins expressed by a cell, tissue, or organism at a certain time mass spectrometry-based quantitative proteomics can be used. The immune system protects the body against harmful pathogens and tumors providing self-tolerance. T-helper cells play critical roles in controlling immune reactions as they are the major components of the adaptive system. The label-free quantitative proteomics which is an advanced technology is utilized to identify the proteomes of Th17 and iTreg cells. This technology has generated a resource that is used to identify over 4000 proteins expressed in Th17 and iTreg

New computational model enables personalized simulation of exercise's metabolic effects

A new mathematical approach incorporates personalized details to simulate the metabolic effects of exercise which can be adapted to different individual characteristics, such as age and weight, as well as different types and intensities of exercise.  Physical activity helps to prevent or treat metabolic diseases and to understand better of the molecular effects of exercise that could aid clinical efforts to address the disease. It is difficult to monitor in people the system-level effects of exercise, so the scientists have developed mathematical models to simulate them. However, previously developed models don’t provide key details such as exercise type and personal characteristics. To address this challenge, the existing model was extended to make it more personalized which used known properties of different organs and tissues to simulate the effects of exercise on metabolic dynamics of glucose, hormones, and related substances in those tissues. However, the model onl

New liquid modeling technique predicts chemical reactions and lowers drug development costs

To reduce drug development cost a new way is developed which is more accurate & efficient for modeling molecules & chemical reactions in liquid solutions allowing the chemists to understand molecule synthesis process details. This software is developed for the need to better understand molecular reaction in liquids. A molecule is expected to behave in a certain manner & the recent models allow us to predict its behavior in the vacuum only where the molecules are isolated.  We also know that drugs are supposed to interact with the liquid they surround like blood. Till now there is no way to predict the behavior of molecules in liquids where the drug will actually make the effect. After knowing this, the question how the molecules change on being put into the liquid surrounding them is answered. In the quantum chemistry, modeling liquids is still a big challenge. It is still not known how to model water model &molecules model when they are dissolved. Molecules in

Photosynthetic protein structure that harvests and traps infrared light

Scientist finds the solution for the structure of a photosynthetic protein in plants to know how near-infrared light is converted into electrical charge. This study explores the insight of the efficiency & limits to the photosynthesis process i.e life-giving process. The chlorophyll used by the plants & algae to absorb energy from sun initiates photosynthesis at wavelength up to 720nm. This is the red part of the light spectrum ranging in the visibility region for the human eye. Bacteria, however, can extend this limit of wavelength into near infra-red region. The research was acted on photosynthetic LH1-RC complex obtained from bacterium Blastochloris Viridis, which has the ability to harvest and use light at wavelengths more than 1,000 nm. Cryo-electron microscopy is used to determine the structure of this complex which depicts how near-infrared light is converted to electrical charge which boosts cell metabolism in the bacterium allowing it to live at an extreme re